The generator matrix

 1  0  1  1  1  1 2X^2+X  1  1 2X  1  1  1  0  1  1  X 2X^2+2X 2X^2  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  1 2X^2+X 2X^2  1  1  1  1 2X^2+2X  X
 0  1  1  2 2X^2+X 2X^2+X+2  1 2X 2X+2  1 2X^2+2X+1 X+1  0  1 2X 2X+1  1  1  1 2X^2+2 2X^2+2X+2 2X^2+X 2X^2+X+1 2X^2+2  1 X+2 2X^2+2X+2 X+2 2X^2 2X^2+2X+2 X+1 X^2+2 X^2+X+1 2X+1 X+2  0 2X  1 X^2+2X 2X^2+X+2 2X^2+X+2  1  1 2X^2+X+2 X+2 2X^2+X 2X+1  1 2X^2
 0  0 2X  0 2X^2 2X^2 2X^2  0 2X^2 2X^2 2X^2+2X 2X X^2+2X 2X X^2+2X  X 2X^2+X X^2+X 2X^2+X  X 2X^2+X 2X^2+2X  X 2X^2+X X^2+X X^2+X 2X^2+X  X X^2+X  0 2X^2+2X X^2 2X^2+X  0 X^2 2X^2 2X^2+2X 2X^2+2X X^2+X 2X^2+2X 2X X^2 X^2+X 2X^2+X  0 2X^2 X^2+X X^2+X 2X^2+2X
 0  0  0 X^2 X^2  0 2X^2 2X^2 2X^2 X^2 2X^2 X^2 2X^2 X^2  0 2X^2 2X^2  0 X^2 X^2  0 X^2  0 2X^2 X^2  0 X^2 2X^2 2X^2 X^2 2X^2  0 X^2 X^2 2X^2 X^2 X^2 2X^2 X^2 2X^2  0  0  0 2X^2  0 2X^2  0 2X^2 2X^2

generates a code of length 49 over Z3[X]/(X^3) who�s minimum homogenous weight is 91.

Homogenous weight enumerator: w(x)=1x^0+450x^91+426x^92+1014x^93+1296x^94+1194x^95+1868x^96+2496x^97+1686x^98+2686x^99+2550x^100+1194x^101+1410x^102+810x^103+276x^104+56x^105+96x^106+42x^107+2x^108+60x^109+36x^110+6x^111+18x^112+6x^113+2x^114+2x^126

The gray image is a linear code over GF(3) with n=441, k=9 and d=273.
This code was found by Heurico 1.16 in 0.867 seconds.